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Hi, I’'m Jonas Termansen

* | worked on Dart for Google:
- Testing
- Release engineering
— Supply chain security

* Now I'm making the Sortix
operating system full time
and developing os-test.

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/
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Sortix

* | implemented 90% of

POSIX libc in Sortix. \
* It’s self-hosting &

Installable. N
* Runs Iits own sortix.org =

Infrastructure and
everything is built natively.
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Did you know there Iis a hew
POSIX 2024 standard?
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POSIX.1-2024

e EXciting new features... but
 The changelog is very incomplete.
e See https://sortix.org/blog/posix-2024/ for all changes.
* The official test suite is proprietary and out of date.
c,or) ninet

 So | decided to make a public test suite! Q

* NGI Zero Commons were kind enough to fund it! ZERO
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100% coverage, in increasing detail

v
detail

Generated
‘Include’ tests

Generated suites Generated ‘namespace’ tests

Triangular power

Hand-written suites : . .,
Invoke every function once (‘basic’)

udp malloc process  pty
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POSIX english is... almost code!

The <time.h> header shall declare the tm structure, which shall include at least the following members:

int tm_sec Seconds [0,60].

int tm_min Minutes [0,59].

int tm_hour Hour [0,23].

int tm_mday Day of month [1,31].

int tm_mon Month of year [0,11].

int tm_year Years since 1900.

int tm_wday Day of week [0,6] (Sunday =0).
int tm_yday Day of year [0,365].

int tm_isdst Daylight Saving flag.

long tm_gmtoff Seconds east of UTC.

const char *tm_zone Timezone abbreviation.

The <time.h> header shall declare the timespec structure, which shall include at least the following members:
time_t tv_sec wWhole seconds.
long tv_nsec Nanoseconds [0, 999999999].

[CX] The <time.h> header shall also declare the itimerspec structure, which shall include at least the following

members:
struct timespec it_interval Timer period.
struct timespec it_value Timer expiration.
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So | parsed POSIX’s html with regexps!

* Custom POSIX parser in C with state machinery.
* Lots and lots and lots of regular expressions.

* And special cases.

* And it worked!
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POSIX - Machine readable .api files

#include <time.h>

typedef clock t; * One line per declaration with name and allowed types.
[CX] typedef locale_t; * Declarations are tagged with POSIX options groups.
[CPT] typedef pid_t;

struct timespec;

parent struct timespec struct_member tv_sec: time_t tv_sec;

parent struct timespec struct_member tv_nsec: long tv_nsec;

[CX] struct itimerspec;

[CX] parent struct itimerspec struct_member it_interval: struct timespec it_interval,
[CX] parent struct itimerspec struct_member it_value: struct timespec it_value;

define NULL;

[CX] symbolic_constant CLOCK_MONOTONIC;

[CX] maybe_define function clock gettime: int clock_gettime(clockid _t, struct timespec *);
[CX] namespace _t$;
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Generated ‘include’ Test Suite

#include <time.h>

#ifdef clock_gettime

#undef clock_gettime

#endif

int (*foo) (clockid_t, struct timespec *) = clock_gettime;
int main(void) { return 0; }

* Generated 3758 tests. finclude <time.h>

void foo(struct timespec* bar)

* Adeclaration is only allowed if it {

time_t *qux = &bar->tv_sec;
has the correct type. | (void)
* | found a lot of missing features. int main(void) { return 0; }
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‘namespace’ Test Suite

* | preprocessed every system header.

* | used the .apli files to check if the headers have
declarations that are not allowed by POSIX

* | found a lot of namespace pollution.

pollution: CMSG_ALIGN

#define CMSG_ALIGN(len) (((len) + sizeof (size_t) - 1) & (size_t) ~(sizeof (size_t) - 1))
pollution: PF_INET

#define PF_INET 2

pollution: PF_RXRPC

#define PF_RXRPC 33
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‘basic’ Test Suite

A function m|ght not work even if it /* Test whether a basic strlen invocation

can be linked with.

works. */

#include <string.h>

- ENOSYS, EINVAL, or buggy

#include "../basic.h"

So, I'm invoking all 1188 functions int main (void)

iIn POSIX on hello world inputs. Lf ( strlen("foo") 1= 3 )
] errx(l, "strlen did not return 3");
| invoked 522 so far. Turns out a lot return 0;

of functions are stubbed and don’t !

actually work.
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Detailled Test Suites

* I’'m also writing a lot of detaliled test suites.

* So far we have: 10, limits, malloc, process, pty,
signal, stdio, termios, and udp.

* Turns out there are a lot of bugs and platform
differences.
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| built a lab with every POSIX OS

* | jJust need ssh + tar + make + sh + cc

AlX, Dra%/(l)nFly, FreeBSD, Haiku, Hurd, Linux (8Iibc), Linux (musl),
maacCS)S,_ anagarm, Minix, NetBSD, OmniOS, OpenBSD, Solaris,
and Sortix

Thank you to cfarm for access to rare proprietary Unix systems.

If you have access to more systems, do get in touch. | want all the systems | can get my hands on, at least if
they’re still maintained and relevant. sortie@maxsi.org

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 14/27


mailto:sortie@maxsi.org
https://sortix.org/os-test/

So, | ran the tests *everywhere*.
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And now | have a *data problem?*.

e 75,000 data points and more bugs than | can possibly report upstream.
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http

e Overall report

 Sliced along many
dimensions

* Click non-green
boxes to explore
your detailed
results
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aix
AIX7.3
powerpc

aix:
90%

(3471/3829) (3397/3834) (3502/3846) (3441/3833) (3533/3839)

§ overall

aix:
92%
(395/426)

§ basic

aix:
93%

(2790/2993) (2704/2995) (2776/2995) (2748/2995) (2788/2995)

§ include

aix:
36%
(20/55)

aix:
100%
(40/40)

§ limits

dragonfly

freebsd

DragonFly FreeBSD

6.4- 15.0-
RELEASE RELEASE
XB86_64 amd64
dragonfly: freebsd:
88% 91%

91% =
+2% (93) as
extension

dragonfly:
87%
(373/426)

dragonily:
50%

93% =
*3% (93) as
extension

dragonfly:
32%
(18/55)

dragonfly:
95%
(38/40)

92% =
+1% (72) as
extension

freebsd:

98%
(419/426)

freebsd:
92%

haiku
Haiku

hrev59326

Jan 20
026
x86_64

haiku:
89%

90% =
+0% (12) as
extension

haiku:
93%
(397/426)

hailou:
91%

hurd
GNU 0.9

1686-AT386

hurd:
92%

93% =
+1% (74) as
extension

hurd:
96%
(410/426)

hurd:
93%

95% = 92% = 95% =

*2% (72)as  +0% (1Z)as  +2%(74) as

extension extension
freebsd: hatku: hurd:
11% 40% 36%
(23/35) (22/55) (20/53)
freebsd: haiku: hurd:
100% 95% 100%
(40/40) (38/40) (40/40)

linux
Linux

6.17.13+deb14-
amd64 x86 64

linux:
93%
(3589/3829)

95% =
+2% (86) as
extension

linux:
98%
(420/426)

linux:
93%
(2790/2993)

96% =
+2% (B6) as
extension

linux:
96%
(53/33)

linux:
100%
(40/40)
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macos
mac0s
26.2
Darwin
25.2.0
armé64

macos:

85%

managarm
Managarm
0.0.1-
rolling
X86 64

managarm:
92%

openbsd

OpenBSD
ri51056 7.8 amd64

openbsd:
85%

redox
Redox
0.5.12
x86_64

redox:
79%

sortix
solaris Sortix
Sun0S5.11 1.1.0-dev

11.4.89.207.2 Dec23
sparc 2025

x86_64

solaris: sortix:
84% 89%

(3260/3829) (3430/3702) (2834/3824) (3676/3830) (3416/3846) (3586/3832) (3286/3846) (3034/3801) (3234/3838) (3432/3832)

B6% =
+1% (51) as
extension

macos:

80%
(342/426)

macos:

87%

managarm:
89%
(316/353)

managarm:
93%

B85% =
+0% (19) as
extension

openbsd:
86%
(369/426)

openbsd:
87%

redox:
72%

(257/353)

redox:
85%

93% =
+0% (36) as
extension
+8% (316) as
previous_posix

solaris:
96%
(411/426)

solaris:
83%

sortix:
91%

(390/426)

sortix:
90%

(2611/2979) (2799/2995) (2310/2995) (2882/2995) (2708/2995) (2822/2993) (2615/2995) (2562/2993) (2500/2995) (2699/2995)

BO% =
+1% (51) as
extension

macos:
94%
(52/55)

macos:
100%
(40/40)

managarm:
63%
(35/33)

managarm:
100%
(40/40)

omnios
i musl nethsd
minix E sunos
T Linux NetBSD
MIMX - gip540 101 221
3.4.01386 S e
Its x86 64 amd64 o
minix: musl: nethsd: omnios:
74% 95% 88% 93%
TT% = 96% = 90% = 95% =
+3% (117)as +0% (21)as +1% (67)as +1%(59) as
extension extension extension extension
minix: musl: nethsd: omnios:
63% 98% 95% 96%
(272/426) (418/426) (405/426) (409/426)
minix: musl: nethsd: omnios:
77% 96% 90% 94%
B1% = 96% = 92% = 96% =
+3% (117)as  +0% (21)as +2%(67)as  +1%(59) as
extension extension extension extension
minix: musl: nethsd: omnios:
29% 96% 36% 98%
(16/55) (53/55) (20/35) (534/55)
minix: musl: nethsd: omnios:
85% 100% 92% 87%
(34/40) (40/40) (37/40) (35/40)

B7% =
+0% (19) as
extension

openbsd:
40%
(22/55)

openbsd:
82%
(33/40)

redox:
36%
(20/35)

redox:
100%
(40/40)
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How each OS scores (POSIX any%)

100%

95%

90%
85%
80%
75% I I
70%

Minix ~ Redox Solaris OpenBS macOS DragonFl NetBSD Haiku Sortix FreeBSD Hurd Managar OmniOS Linux Linux
D y m (glibc)  (musl)
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~ POSIX.1-2024 compliance%

90%
80%
70%
60%
o0% W posix%
40% M posix-2024%
30%
20%
10%
0%

Minix Dragon macOS OpenBS AIX NetBSD Linux Hurd Solaris Redox FreeBS Haiku OmniOS Linux Managa Sortix
Fly D (glibc) D (musl) rm

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 19/27


mailto:sortie@maxsi.org
https://sortix.org/os-test/

Examples of bugs on DragonFlyBSD

Wrong:

Int setpriority(int, int, int);

Int getnameinfo(const struct sockaddr *restrict, socklen_t, char *restrict,
size_t, char *restrict, size _t, int);

Correct:

Int setpriority(int, id_t, int);

Int getnameinfo(const struct sockaddr *restrict, socklen_t, char *restrict,
socklen_t, char *restrict, socklen_t, int);
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Examples of bugs, sigaltstack

* What happens if you set up an alternate signal stack and execute
a new program?

 POSIX says the stack is unset and the SA_ ONSTACK bit is unset.

e But: DragonFly, FreeBSD, and OpenBSD preserves the bit on
exec => boom

stack_tss ={.ss _size = SIGSTKSZ, .ss_sp = malloc(SIGSTKSZ) },
sigaltstack(&ss, NULL);

struct sigaction sa = { .sa_handler = sa_handler, .sa_flags = SA_ ONSTACK };
sigaction(SIGUSR1, &sa, NULL);
execve(...); [*?*
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POSIX improvement over time
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I[devirandom

* On topic, I'm happy to announce:
- /dev/random Is universal.
- /dev/urandom Is universal.

* They both exist everywhere.
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Critical Mass

* My idea is to have enough useful data.
* Operating systems developers will find It.
* All results are open data published as .json.

* Developers will convince themselves and | won't
need to report + debate on thousands of bugs.

* And all systems will become slightly better. :) !
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Community project

* Send a MR if you want portability data for any topic
you're interested in! Send a .c and I'll run it everywhere!

* os-test is now used for Sortix, Managarm, and Redox
development. We’re competing for top scores.

* o0s-test makes it possible to develop new quality POSIX
systems and improve the existing ones.
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The best POSIX system?

* Yep. It's musl libc + the Linux
* But other systems score very

Kernel.

nighly too.

* If you want to try out the POSIX 2024 additions,

Sortix has 90% of them.

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/
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Thank You

* Go check out os-test, tell your osdev friends :)
* Jonas Termansen, sortie@maxsi.org

* https://sortix.org/os-test/

* https://gitlab.com/sortix/os-test/

* @sortiecat on Twitter, @jonastermansen on IG
* Meet me in the hallway for a chat! :)
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