os-test

Measuring POSIX compliance on every single OS

https://sortix.org/os-test/ Jonas ‘Sortie’ Termansen, FOSDEM 2026

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 1/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

Hi, I’'m Jonas Termansen

* | worked on Dart for Google:
- Testing
- Release engineering
— Supply chain security

* Now I'm making the Sortix
operating system full time
and developing os-test.

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/

#sortix on irc.sortix.org

2127

mailto:sortie@maxsi.org
https://sortix.org/os-test/

Sortix

* | implemented 90% of

POSIX libc in Sortix. \
* It’s self-hosting &

Installable. N
* Runs Iits own sortix.org =

Infrastructure and
everything is built natively.

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 3/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

Did you know there Iis a hew
POSIX 2024 standard?

mailto:sortie@maxsi.org
https://sortix.org/os-test/

POSIX.1-2024

e EXciting new features... but
 The changelog is very incomplete.
e See https://sortix.org/blog/posix-2024/ for all changes.
* The official test suite is proprietary and out of date.
c,or) ninet

 So | decided to make a public test suite! Q

* NGI Zero Commons were kind enough to fund it! ZERO

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 5/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/
https://sortix.org/blog/posix-2024/

100% coverage, in increasing detail

v
detail

Generated
‘Include’ tests

Generated suites Generated ‘namespace’ tests

Triangular power

Hand-written suites : . .,
Invoke every function once (‘basic’)

udp malloc process pty

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org

6/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

POSIX english is... almost code!

The <time.h> header shall declare the tm structure, which shall include at least the following members:

int tm_sec Seconds [0,60].

int tm_min Minutes [0,59].

int tm_hour Hour [0,23].

int tm_mday Day of month [1,31].

int tm_mon Month of year [0,11].

int tm_year Years since 1900.

int tm_wday Day of week [0,6] (Sunday =0).
int tm_yday Day of year [0,365].

int tm_isdst Daylight Saving flag.

long tm_gmtoff Seconds east of UTC.

const char *tm_zone Timezone abbreviation.

The <time.h> header shall declare the timespec structure, which shall include at least the following members:
time_t tv_sec wWhole seconds.
long tv_nsec Nanoseconds [0, 999999999].

[CX] The <time.h> header shall also declare the itimerspec structure, which shall include at least the following

members:
struct timespec it_interval Timer period.
struct timespec it_value Timer expiration.

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 7127

mailto:sortie@maxsi.org
https://sortix.org/os-test/
javascript:open_code('CX')

So | parsed POSIX’s html with regexps!

* Custom POSIX parser in C with state machinery.
* Lots and lots and lots of regular expressions.

* And special cases.

* And it worked!

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 8/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

POSIX - Machine readable .api files

#include <time.h>

typedef clock t; * One line per declaration with name and allowed types.
[CX] typedef locale_t; * Declarations are tagged with POSIX options groups.
[CPT] typedef pid_t;

struct timespec;

parent struct timespec struct_member tv_sec: time_t tv_sec;

parent struct timespec struct_member tv_nsec: long tv_nsec;

[CX] struct itimerspec;

[CX] parent struct itimerspec struct_member it_interval: struct timespec it_interval,
[CX] parent struct itimerspec struct_member it_value: struct timespec it_value;

define NULL;

[CX] symbolic_constant CLOCK_MONOTONIC;

[CX] maybe_define function clock gettime: int clock_gettime(clockid _t, struct timespec *);
[CX] namespace _t$;

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 9/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

Generated ‘include’ Test Suite

#include <time.h>

#ifdef clock_gettime

#undef clock_gettime

#endif

int (*foo) (clockid_t, struct timespec *) = clock_gettime;
int main(void) { return 0; }

* Generated 3758 tests. finclude <time.h>

void foo(struct timespec* bar)

* Adeclaration is only allowed if it {

time_t *qux = &bar->tv_sec;
has the correct type. | (void)
* | found a lot of missing features. int main(void) { return 0; }

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 10/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

‘namespace’ Test Suite

* | preprocessed every system header.

* | used the .apli files to check if the headers have
declarations that are not allowed by POSIX

* | found a lot of namespace pollution.

pollution: CMSG_ALIGN

#define CMSG_ALIGN(len) (((len) + sizeof (size_t) - 1) & (size_t) ~(sizeof (size_t) - 1))
pollution: PF_INET

#define PF_INET 2

pollution: PF_RXRPC

#define PF_RXRPC 33

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 11/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

‘basic’ Test Suite

A function m|ght not work even if it /* Test whether a basic strlen invocation

can be linked with.

works. */

#include <string.h>

- ENOSYS, EINVAL, or buggy

#include "../basic.h"

So, I'm invoking all 1188 functions int main (void)

iIn POSIX on hello world inputs. Lf (strlen("foo") 1= 3)
] errx(l, "strlen did not return 3");
| invoked 522 so far. Turns out a lot return 0;

of functions are stubbed and don’t !

actually work.

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 12/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

Detailled Test Suites

* I’'m also writing a lot of detaliled test suites.

* So far we have: 10, limits, malloc, process, pty,
signal, stdio, termios, and udp.

* Turns out there are a lot of bugs and platform
differences.

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 13/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

| built a lab with every POSIX OS

* | jJust need ssh + tar + make + sh + cc

AlX, Dra%/(l)nFly, FreeBSD, Haiku, Hurd, Linux (8Iibc), Linux (musl),
maacCS)S,_ anagarm, Minix, NetBSD, OmniOS, OpenBSD, Solaris,
and Sortix

Thank you to cfarm for access to rare proprietary Unix systems.

If you have access to more systems, do get in touch. | want all the systems | can get my hands on, at least if
they’re still maintained and relevant. sortie@maxsi.org

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 14/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

So, | ran the tests *everywhere*.

mailto:sortie@maxsi.org
https://sortix.org/os-test/

And now | have a *data problem?*.

e 75,000 data points and more bugs than | can possibly report upstream.

mailto:sortie@maxsi.org
https://sortix.org/os-test/

http

e Overall report

 Sliced along many
dimensions

* Click non-green
boxes to explore
your detailed
results

s:lIsortix.orglos-test/

aix
AIX7.3
powerpc

aix:
90%

(3471/3829) (3397/3834) (3502/3846) (3441/3833) (3533/3839)

§ overall

aix:
92%
(395/426)

§ basic

aix:
93%

(2790/2993) (2704/2995) (2776/2995) (2748/2995) (2788/2995)

§ include

aix:
36%
(20/55)

aix:
100%
(40/40)

§ limits

dragonfly

freebsd

DragonFly FreeBSD

6.4- 15.0-
RELEASE RELEASE
XB86_64 amd64
dragonfly: freebsd:
88% 91%

91% =
+2% (93) as
extension

dragonfly:
87%
(373/426)

dragonily:
50%

93% =
*3% (93) as
extension

dragonfly:
32%
(18/55)

dragonfly:
95%
(38/40)

92% =
+1% (72) as
extension

freebsd:

98%
(419/426)

freebsd:
92%

haiku
Haiku

hrev59326

Jan 20
026
x86_64

haiku:
89%

90% =
+0% (12) as
extension

haiku:
93%
(397/426)

hailou:
91%

hurd
GNU 0.9

1686-AT386

hurd:
92%

93% =
+1% (74) as
extension

hurd:
96%
(410/426)

hurd:
93%

95% = 92% = 95% =

*2% (72)as +0% (1Z)as +2%(74) as

extension extension
freebsd: hatku: hurd:
11% 40% 36%
(23/35) (22/55) (20/53)
freebsd: haiku: hurd:
100% 95% 100%
(40/40) (38/40) (40/40)

linux
Linux

6.17.13+deb14-
amd64 x86 64

linux:
93%
(3589/3829)

95% =
+2% (86) as
extension

linux:
98%
(420/426)

linux:
93%
(2790/2993)

96% =
+2% (B6) as
extension

linux:
96%
(53/33)

linux:
100%
(40/40)

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/

macos
mac0s
26.2
Darwin
25.2.0
armé64

macos:

85%

managarm
Managarm
0.0.1-
rolling
X86 64

managarm:
92%

openbsd

OpenBSD
ri51056 7.8 amd64

openbsd:
85%

redox
Redox
0.5.12
x86_64

redox:
79%

sortix
solaris Sortix
Sun0S5.11 1.1.0-dev

11.4.89.207.2 Dec23
sparc 2025

x86_64

solaris: sortix:
84% 89%

(3260/3829) (3430/3702) (2834/3824) (3676/3830) (3416/3846) (3586/3832) (3286/3846) (3034/3801) (3234/3838) (3432/3832)

B6% =
+1% (51) as
extension

macos:

80%
(342/426)

macos:

87%

managarm:
89%
(316/353)

managarm:
93%

B85% =
+0% (19) as
extension

openbsd:
86%
(369/426)

openbsd:
87%

redox:
72%

(257/353)

redox:
85%

93% =
+0% (36) as
extension
+8% (316) as
previous_posix

solaris:
96%
(411/426)

solaris:
83%

sortix:
91%

(390/426)

sortix:
90%

(2611/2979) (2799/2995) (2310/2995) (2882/2995) (2708/2995) (2822/2993) (2615/2995) (2562/2993) (2500/2995) (2699/2995)

BO% =
+1% (51) as
extension

macos:
94%
(52/55)

macos:
100%
(40/40)

managarm:
63%
(35/33)

managarm:
100%
(40/40)

omnios
i musl nethsd
minix E sunos
T Linux NetBSD
MIMX - gip540 101 221
3.4.01386 S e
Its x86 64 amd64 o
minix: musl: nethsd: omnios:
74% 95% 88% 93%
TT% = 96% = 90% = 95% =
+3% (117)as +0% (21)as +1% (67)as +1%(59) as
extension extension extension extension
minix: musl: nethsd: omnios:
63% 98% 95% 96%
(272/426) (418/426) (405/426) (409/426)
minix: musl: nethsd: omnios:
77% 96% 90% 94%
B1% = 96% = 92% = 96% =
+3% (117)as +0% (21)as +2%(67)as +1%(59) as
extension extension extension extension
minix: musl: nethsd: omnios:
29% 96% 36% 98%
(16/55) (53/55) (20/35) (534/55)
minix: musl: nethsd: omnios:
85% 100% 92% 87%
(34/40) (40/40) (37/40) (35/40)

B7% =
+0% (19) as
extension

openbsd:
40%
(22/55)

openbsd:
82%
(33/40)

redox:
36%
(20/35)

redox:
100%
(40/40)

#sortix on irc.sortix.org

95% =
+1% (36) as
extension
+10% (316) as
previous_posix

solaris:
36%
(20/55)

solaris:
87%
(35/40)

17/27

sortix:
A1%
(23/35)

sortix:
100%
(40/40)

mailto:sortie@maxsi.org
https://sortix.org/os-test/

How each OS scores (POSIX any%)

100%

95%

90%
85%
80%
75% I I
70%

Minix ~ Redox Solaris OpenBS macOS DragonFl NetBSD Haiku Sortix FreeBSD Hurd Managar OmniOS Linux Linux
D y m (glibc) (musl)

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 18/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

~ POSIX.1-2024 compliance%

90%
80%
70%
60%
o0% W posix%
40% M posix-2024%
30%
20%
10%
0%

Minix Dragon macOS OpenBS AIX NetBSD Linux Hurd Solaris Redox FreeBS Haiku OmniOS Linux Managa Sortix
Fly D (glibc) D (musl) rm

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 19/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

Examples of bugs on DragonFlyBSD

Wrong:

Int setpriority(int, int, int);

Int getnameinfo(const struct sockaddr *restrict, socklen_t, char *restrict,
size_t, char *restrict, size _t, int);

Correct:

Int setpriority(int, id_t, int);

Int getnameinfo(const struct sockaddr *restrict, socklen_t, char *restrict,
socklen_t, char *restrict, socklen_t, int);

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 20/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

Examples of bugs, sigaltstack

* What happens if you set up an alternate signal stack and execute
a new program?

 POSIX says the stack is unset and the SA_ ONSTACK bit is unset.

e But: DragonFly, FreeBSD, and OpenBSD preserves the bit on
exec => boom

stack_tss ={.ss _size = SIGSTKSZ, .ss_sp = malloc(SIGSTKSZ) },
sigaltstack(&ss, NULL);

struct sigaction sa = { .sa_handler = sa_handler, .sa_flags = SA_ ONSTACK };
sigaction(SIGUSR1, &sa, NULL);
execve(...); [*?*

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 21/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

L
POSIX improvement over time

93%
o i L a - ~Sn—i a
g =&
88% /0 4 % & 1 00— L=
&
7= 75 =% 7z T i hidee—dr ==
83% — < < < == freebsd%
=== haiku%
managarm%
==de== 0penbsd%
78% == redox%
= SOrtix%

73%
> .»_—»»—-/

>=bp- > > > > —

68% I I I \ \
07/22/2025 08/22/2025 09/22/2025 10/22/2025 11/22/2025 12/22/2025

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 22/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

I[devirandom

* On topic, I'm happy to announce:
- /dev/random Is universal.
- /dev/urandom Is universal.

* They both exist everywhere.

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 23/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

Critical Mass

* My idea is to have enough useful data.
* Operating systems developers will find It.
* All results are open data published as .json.

* Developers will convince themselves and | won't
need to report + debate on thousands of bugs.

* And all systems will become slightly better. :) !

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 24/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

Community project

* Send a MR if you want portability data for any topic
you're interested in! Send a .c and I'll run it everywhere!

* os-test is now used for Sortix, Managarm, and Redox
development. We’re competing for top scores.

* o0s-test makes it possible to develop new quality POSIX
systems and improve the existing ones.

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 25/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

The best POSIX system?

* Yep. It's musl libc + the Linux
* But other systems score very

Kernel.

nighly too.

* If you want to try out the POSIX 2024 additions,

Sortix has 90% of them.

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/

#sortix on irc.sortix.org 26/27

mailto:sortie@maxsi.org
https://sortix.org/os-test/

Thank You

* Go check out os-test, tell your osdev friends :)
* Jonas Termansen, sortie@maxsi.org

* https://sortix.org/os-test/

* https://gitlab.com/sortix/os-test/

* @sortiecat on Twitter, @jonastermansen on IG
* Meet me in the hallway for a chat! :)

Jonas ‘Sortie’ Termansen, sortie@maxsi.org, https://sortix.org/os-test/ #sortix on irc.sortix.org 27127

mailto:sortie@maxsi.org
https://sortix.org/os-test/
mailto:sortie@maxsi.org
https://sortix.org/os-test/
https://gitlab.com/sortix/os-test/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

